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The nonlinear Schro¨dinger equation with repulsion~also called the Gross-Pitaevsky equation! is solved
numerically with damping at small scales and pumping at intermediate scales and without any large-scale
damping. Inverse cascade creating a wave condensate is studied. At moderate pumping, it is shown that the
evolution comprises three stages:~i! short period~few nonlinear times! of setting the distribution of fluctua-
tions with the flux of waves towards large scales,~ii ! long intermediate period of self-saturated condensation
with the rate of condensate growth being inversely proportional to the condensate amplitude, the number of
waves growing asAt, the total energy linearly increasing with time and the level of over-condensate fluctua-
tions going down as 1/At, and~iii ! final stage with a constant level of over-condensate fluctuations and with the
condensate linearly growing with time. Most of the waves are in the condensate. The flatness initially increases
and then goes down as the over-condensate fluctuations are suppressed. At the final stage, the second structure
function ^uc12c2u2&} lnr12 while the fourth and sixth functions are close to their Gaussian values. Spontane-
ous symmetry breaking is observed: turbulence is much more anisotropic at large scales than at pumping
scales. Another scenario may take place for a very strong pumping: the condensate contains 25–30 % of the
total number of waves, the harmonics with small wave numbers grow as well.@S1063-651X~96!06911-5#

PACS number~s!: 47.10.1g, 47.27.Gs

If an unforced undamped system conserves more than one
integral of motion then the pumping acting at some scale
generally produces two cascades ink space. While a down-
scale~direct! cascade and related fragmentation is what one
naturally expects from turbulence, an upscale~inverse! cas-
cade is a kind of self-organization. Another important dis-
tinction between cascades stems from their destinations.
Most of the systems provide for a small-scale dissipation
~like viscosity! as a natural sink for a direct cascade. Con-
trary, in many systems, large-scale modes do not have sig-
nificant damping so that inverse cascade may lead to a
growth of the largest mode.

Besides the inverse cascade in two-dimensional incom-
pressible fluid @1–3#, any system with the Hamiltonian
H5H21H4,

H25(
k

vkck*ck , H45 (
k1k2k3k4

lk1k2k3k4
ck1
* ck2

* ck3
ck4

,

allows for an inverse cascade since it conserves the total
number of wavesN5(kucku2. The system is a collection of
waves with the frequency spectrumvk and the four wave
interaction with the evident propertieslk1k2k3k4
5lk2k1k3k4

5lk3k4k1k2
. At a small level of nonlinearity

Hint!H2, the weak turbulence of such a system is well un-
derstood@4#. The presence of two integrals of motion, both
quadratic in wave amplitudes~neglecting the contribution of
Hint into the Hamiltonian!, leads to the existence of two
cascades, direct energy cascade and inverse cascade of
waves, leading to a large-scale build-up that will be called
the condensate. The simple theorem can be readily proved:
one needs at least two sinks~one at larger and another at

smaller scales than that of the pumping! to absorb both inte-
grals and provide for a steady state@4#. At strong nonlinear-
ity, the relations between integrals and their fluxes are not so
simple, as we shall see below.

We consider the case ofvk5k2 andlk1k2k3k4
5const cor-

responding to the famous nonlinear Schro¨dinger equation,

ic t1Dc1lucu2c50, ~1!

which describes light in media with Kerr nonlinearity as well
as any turbulence of envelopes@5#. Weak turbulence in the
framework of~1! is described in@4,6–8#. In two dimensions,
the main prediction for the pair correlation function
^ckck8

* &5nkDkk8 is as follows:nk5 f (k)T/k2, where the di-
mensionless functionf (k) ~which distorts equilibrium distri-
butionT/k2 to provide for nonzero fluxes! is a slow logarith-
mic function at the region of the direct cascade@8# and it
approaches a constant at the region of the inverse cas-
cade @7#. The dimensionless parameter of nonlinearity
luaku2k2/vk5luaku2 increases with the wavelength so that
the turbulence is getting strong at smallk. Contrary to weak
turbulence, which is insensitive to the sign of the interaction
constant l, strong turbulence has qualitatively different
properties for focusing (l.0) and defocusing media
(l,0).

Turbulence at the focusing case has been qualitatively de-
scribed in@7#: an inverse cascade produces large-scale cav-
erns that are modulationally unstable and collapse in a finite
time. Collapse~or self-focussing! provides for a strongly
nonlinear direct cascade of waves towards the small-scale
sink. Eventually, a steady state is established without an ex-
ternal large-scale sink: all mean values~energy, total number
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of waves, etc.! do not grow with time. Strong large-scale
turbulence coexists with small-scale weak turbulence.

We consider the defocusing case. Equation~1! with
l,0 is called the Gross-Pitaevsky equation@9#. Immense
literature is devoted to the properties of particular solutions
and to equilibrium statistics~including phase transitions! in
that model; see, e.g.,@10–12#. We are interested in turbu-
lence excited by an external pumping. Strong turbulence in
the framework of~1! may contain a complicated mixture of
condensate, phonons, shocks, grey solitons, and quantized
vortices. Such complexity does not imply the absence of
simple universal scaling laws for the correlation functions,
yet it makes it difficult to establish them. The complete ana-
lytical description of such turbulence is still ahead of us. The
three-dimensional kinetics has been considered by Kraichnan
within the ring-model approximation@13#. We consider two-
dimensional turbulence under the action of the instability
providing pumping at intermediate scales and the small-scale
damping. This paper is an account of the first step, we adress
the simplest questions: Is it possible to have a steady state at
finite k without a large-scale sink? When and how does the
condensate appear? We shall show that those two questions
are closely connected: fluctuations atkÞ0 can be steady
only if a growing condensate appears atk50.

For the numerical integration of Eq.~1! with l521, we
applied the method described in@7#. All runs were done in
the domain 2p32p. For the initial conditions, the
‘‘quasiequlibrium’’ spectrumnk5T/(k21m) was chosen
with T50.01 andm51/12. The initial phases were taken
randomly. To consider turbulence, we added to the
right-hand of the equation for ]ck/]t the terms
gp(k)ck2gd(k)ck which describe the pumping due to in-
stability,

gp~k!5aA~k22kl
2!~kr

22k2! at kl,k,kr

~and zero otherwise! and the small-scale damping

gd~k!50.5k2h~k/kd!,

h~x!5
1

6x5
exp@5~12x22!#, x<1,

h~x!512
5

6
exp@1/2~12x2!#, x.1.

The choice ofgd was to model Landau damping in plasma;
the particular form ofh(x) should be irrelevant as long as
h(x) tends to a constant at largex.

Figures 1 and 2 present the data for the run on a
1283128 grid with a50.05,kl528,kr532 ~moderate
pumping!. One can see from Fig. 1~d! that the condensate
appears aftert.10 and eventually the most of the waves are
in the condensate. HereN0 has been calculated from the
average value ofc over space, i.e., it represents a coherent
condensate. The square-root regimeN0}At starts when the
number of waves at the condensate is of order of the total
number of waves. The regime ends~at t'70) when the cor-
relation scaler 0.N0

21/2 is approaching the dissipation scale.
To characterize the overcondensate fluctuations, the structure
functionsSi(r )5^uc(x1r )2c(x)u i& were obtained by aver-
aging overx and over time~during an interval of few dimen-

FIG. 1. ~a!–~c! Structure func-
tions at different times:
2•2t532, 22t555, •••t592,
—t5127; ~d! total number of
wavesN and the number of waves
in the coherent condensateN0.

FIG. 2. ~a! Level sets of the spectrumn(kx ,ky) averaged over
time t5(119–127).~b! Spectra at different directions ink space:
2•2 kx50, 222 ky50, ••• kx52ky , unbroken linekx5ky .

5096 54A. DYACHENKO AND G. FALKOVICH



sionless time units!. One can see from Fig. 1~a! that the
second structure function is getting logarithmic at large time
when it stabilizes~after the timet.100 the variations ofSi
are invisible on the scale of Fig. 1!. That corresponds to the
spectrum nk}k

22. To see if the statistics of the over-
condensate fluctuations deviates from Gaussian statistics we
calculated the second flatnessS4 /S2

2 ~2 for Gaussian statis-
tics! and the third oneS6 /S2

3 ~8 for Gaussian statistics!. The
flatness grows up until the timet'55 ~when the relative
growth of the condensate saturates!, then the flatness de-
creases. The flatness is approximately scale-independent at
r.r 0 where the correlation scaler 0.N0

21/2 decreases with
time.

Steady spectrum is substantially anisotropic despite the
pumping being almost isotropic; the anisotropy grows ask
decreases — see Fig. 2~a!. Note that within the theory of

weak turbulence the large-scale equilibrium spectrum is
structurally stable with respect to the angular modulations
@4#. That means that the symmetry breaking may be due to
strongly nonlinear phenomena~like kink creation! — see
also Fig. 3. Figures 2 and 3 show that there are two perpen-
dicular directions, one~at .30°! with the largest level of
fluctuations and another with the smallest level. At the first
direction, the spectrum is flat at smallk and then drops as
approximatelyk23 which may be the spectrum of shocks.
The small fluctuations at the perpendicular direction have
spectrumk22. One may hypothetize that the strong turbu-
lence of overcondensate fluctuations may be considered as
quasi-one-dimensional structures imposed onto a more or
less isotropic set of waves.

To study the asymptotic regime~with linearly growing
condensate and a steady level of fluctuations! on a larger

FIG. 4. Long-time evolution under the action
of a moderate pumping:~a! total number of
wavesN and the number of waves in the coherent
condensateN0, ~b! ratio of number of waves
squared to the Hamiltonian,~c! hystogram of the
overcondensate fluctuations,~d! nonlinearity pa-
rameterH4 /H25* ucu4dxdy/2* u¹cu2dxdy.

FIG. 3. Profiles ofuCu ~solid line!, ReC ~bro-
ken line!, and ImC ~dotted line! along the diago-
nals and parallel to the box walls,t5135.7
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time scale, we made a run on 32332 grid with
a50.05,kl56,kr510 ~see Fig. 4!. Note that the parameter
of nonlinearityH4 /H2 is much larger than unity when the
fluctuations are steady, yet the ratioN2/2SH (S54p2 being
the domain area! is close to unity so that the condensate
gives the main contribution into both energy and number of
waves. Figure 4~c! presents the hystogram of the fluctuations
of the number of waves above the condensate. The statistics
of the over-condensate fluctuations approaches Gaussian
similarly to what is shown at Figs. 1~b! and 1~c!, despite the
high nonlinearity of the system.

Making another run~not shown! with the only difference
being that the amplitude of the pumping is ten times larger,
we did not find any sign of a growing condensate and of a
steady state at finitek at the same time scalet.400. One
may suggest that if the pumping initially produces weak tur-
bulence atk;kp then the condensate has time to appear, and
then the growing condensate serves as a sink providing for a
steady state atk50. Very strong pumping produces unsteady
turbulence with a small condensate~at least as an intermedi-
ate regime for a long time!.

Another setting where the evolution is qualitatively differ-
ent from what is shown at Figs. 1–4 is when the pumping is
sufficiently strong and separated from the damping region.
Figures 5 and 6 show the data for the run with
a50.068,kl513,kr517. The main difference is the position

of the pumping maximum which is nowkp515. The initial
data and the damping are the same as in Fig. 1. As well as in
the case of a strong pumping, we do not observe a steady
state at nonzerok ~we run until t.70). The total number of
waves increases exponentially untilt'2, then the interme-
diate stage follows with an approximately quadratic growth
N;t2. After t.50, the evolution ofN(t) comes eventually
into linear growthN;t. The occupation numbersnk grow at
small k and saturate at the pumping scale, the spectrum is
getting steeper atk<kp with the scaling exponent approxi-
mately 4.5 att544. During the intermediate stage, the con-
densate contains a negligible portion of the total number of
waves @Fig. 5~a!#. Only at t.50, the condensate starts to
grow, the ratioN0 /N fluctuates around 1/3~not shown!. That
means thatc̄ is small yet the value ofuc(r )u2 is almost
constant in space@see Figs. 5~b! and 6#. There are only few
deep minima in ucu2(r ) @like that seen at Fig. 5~b! at
x'2.1# which probably correspond to grey solitons or vorti-
ces. Most of the realizations look like Fig. 6~compare with
Fig. 3 for a moderate pumping!. One may see kinklike struc-
tures in the profiles of ReC and Imc while ucu is almost
constant. The fact that the fluctuations ofuc(r )u2 in space are
small is reflected also in the dependence ofN2/2SH on time
~not shown! which approaches unity similarly to Fig. 3~b!.

To conclude, there seem to be two qualitatively different
regimes of the kinetics of the nonequilibrium condensation.

FIG. 5. ~a! Initial stage of the evolution under
the action of a strong pumping: total number of
wavesN and the number of waves in the coherent
condensate N0, ~b! spatial dependence of
uc(x,y)u2 at t542.4.

FIG. 6. Profiles ofuCu ~solid line!, ReC ~bro-
ken line!, and ImC ~dotted line! along the diago-
nals and parallel to the box walls,t545.4.
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For a moderate pumping that creates weaklike turbulence at
pumping scales, the inverse cascade produces strong conden-
sate that suppresses the over-condensate fluctuation. Linearly
growing condensate provides a sink for a turbulence which is
steady at anykÞ0. The regimes that appear at strong pump-
ing, where finite Fourier harmonics grow as well as the con-
densate, need further studies.
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